
NUMERICAL HEAT TRANSFER, PART A 
2017, VOL. 72, NO. 8, 600–627 
https://doi.org/10.1080/10407782.2017.1394134 

Natural convection of power-law fluids under wall  
vibrations: A lattice Boltzmann study 
Jian-Fei Xie and Bing-Yang Cao 

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering 
Mechanics, Tsinghua University, Beijing, China  

ABSTRACT 
The natural convection of non-Newtonian power-law fluids in a rectangular 
cavity in the presence of wall vibrations has been investigated by the lattice 
Boltzmann method. The longitudinal and transverse vibrations are applied to 
the horizontal walls of the cavity separately, and the two vertical walls are set 
as high and low temperatures, respectively. The velocity fields and 
temperature distributions of power-law fluids are visualized with respect 
to the streamlines and isotherm contours. The heat transfer characteristics 
are interpreted in terms of averaged Nusselt number (Nu) near the surface of 
heated wall. The effects of power-law index n in the range of 0.5–1.2 on 
momentum transport and heat transfer are investigated for Rayleigh number 
(Ra) in the range of 103–105 and Prandtl number (Pr) of 10. Nu near the hot 
wall is increased significantly with the fluid exponent increase at high Ra, but 
it is smaller than that without wall vibrations. Moreover, wall vibrations show 
slight and even no influence on Nu of power-law fluids at low Ra. The 
maximum velocity components of shear-thinning fluids are both decreased 
under wall vibrations with increasing n, but it is unchanged in shear- 
thickening fluids. The velocity components along the central lines of the 
cavity are decreased significantly for power-law fluids under wall vibrations. 
It is concluded that wall vibrations influence the streamlines, isotherm 
contours, and heat transfer characteristics of power-law fluids significantly at 
high Ra (∼105). In addition, it has been found that the heat transfer rate is 
decreased as both aspect ratio and Pr increase. 
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1. Introduction 

Flows of Newtonian and non-Newtonian fluids driven by buoyancy in rectangular enclosures are 
found in a wide range of engineering applications such as nuclear reactors, solar devices, food 
products, and polymer processing industries [1]. For differentially heated two-dimensional enclosures 
with adiabatic side walls, the heat transfer characteristics are influenced by the inclination of cavity 
with respect to the horizontal plane, Prandtl number, and Rayleigh number based on the height of 
the cavity. For example, Vinogradov et al. [2] investigated the steady natural convection of both 
Newtonian and non-Newtonian shear-thickening liquids confined in rectangular cavities with 
different aspect ratios and found significant variation in heat transfer rate. On the other hand, most 
structured fluids of polymeric and/or multiphase nature encountered in industrial practice exhibit the 
shear-thinning behavior which is characterized by an apparent viscosity and can vary as a function of 
the shear rate by several orders of magnitudes. Instinctively, this dependence of viscosity upon the 
shear rate further accentuates the coupling between the velocity and temperature fields due to the 
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point to point variation of the fluid viscosity in the flow domain, thereby influencing the rate of heat 
transfer in an intricate manner [3]. 

External factors and varying boundary conditions may influence the heat transfer characteristics of 
natural convection of fluids [4–6]. For example, the effect of a magnetic field on natural convection of 
non-Newtonian power-law fluids in a cavity with a linearly heated wall had been analyzed by a finite 
difference lattice Boltzmann method [7], and the entropy generation caused by the natural convection 
in an enclosure filled with non-Newtonian nanofluids had also been simulated [8, 9]. Results indi-
cated that the augmentation of power-law index in the absence of magnetic field results in a decrease 
in heat transfer, and the increment of the magnetic field power declines the effect of power-law index 
on heat transfer. Moreover, laminar mixed convection of shear-thinning fluids in a square lid-driven 
cavity with sinusoidal boundary conditions under the combined buoyancy effects of thermal and 
mass diffusion had also been analyzed [10, 11], including the sinusoidal temperature profile. The fall 
of the power-law index declines the heat and mass transfer at small Richard numbers. However, for 
unity of Richard number, the heat and mass transfer rise with the increment of power-law index for 
buoyancy ratio of unity. 

Non-Newtonian fluid flows are usually complicated and require much pumping energy to drive 
the fluid flowing through tube lines and processing equipment, so that various ways of facilitating 
their flow and processing have been sought over the past decades [12–14]. Mechanical vibration 
can result in the fluidity of the material and hence facilitate its processing [15–18]. Particularly, Eesa 
and Barigou [19] reported a computational fluid dynamics investigation into the effects of rotational 
oscillation on the flow rate of four types of fluids: Newtonian, power law, Herschel–Bulkley, and 
Bingham plastic, in a straight tube. In the last two decades, after the pioneering work [20, 21], the 
rapid growth of LBM for physical flows has been seen obviously [22–24] and great efforts have been 
made in incompressible thermal flows [25, 26], high-frequency oscillating flows [27], phase separation 
in thin fluid films [28, 29], and microscale oscillating flows in microelectromechanical systems [30]. 
Particularly, Aharonov and Rothman [31] proposed the first LBM model for the power-law fluids. In 
this model, the relaxation time in the BGK collision term varies as a function of shear stress at each 
time step to give the local fluid viscosity that depends on the strain-rate tensor. One decade later, an 
ad hoc modification of this LBM model was introduced by Gabbanelli et al. [32], i.e., a truncated 
power-law model, to overcome the limits of viscosity divergence and zero-viscosity for shear-thinning 

Nomenclature 

c discrete particle velocity 
k consistency of fluid 
cs speed of sound 
n fluid exponent 
_e local shear rate 
Nu averaged Nusselt number 
e strain rate 
Pr Prandtl number 
f buoyancy force 
R gas constant 
F body force 
Ra Rayleigh number 
f density distribution function 
T temperature 
g gravity 
t time 
G pressure gradient 
u fluid velocity 
g temperature distribution function 
V* reference velocity 
H height of cavity 

x particle coordinate 

Greek symbols 
α thermal diffusion coefficient 
ρ fluid density 
β thermal expansion coefficient 
τ relaxation time 
δ expansion parameter 
μ dynamic viscosity 
ε internal energy 
ν kinematic viscosity 

Superscripts 
eq equilibrium state 
neq nonequilibrium state 

Subscripts 
c temperature index 
s speed index 
eff effective 
ν density index 
i discrete direction   
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and shear-thickening fluids, respectively. Recently, advanced lattice Boltzmann schemes of non- 
Newtonian fluids have been developed including: integrated lattice Boltzmann and finite volume 
method to modeling incompressible polymer viscoelastic fluid flows [33], mass-conserving lattice 
Boltzmann model [34], decoupling multiple-relaxation-time lattice Boltzmann flux solver [35], and 
free-energy-based LBM for multiphase fluids with possible high-density and high-viscosity ratios 
[36]. Moreover, Yoshino et al. [37] constructed a novel lattice Boltzmann model for the inelastic 
non-Newtonian fluids. Shortly the model has been modified and applied to Bingham plastic materials 
and blood flow by Wang et al. [38, 39]. In addition, the immersed boundary-LBM (IB-LBM) has been 
introduced to simulate the non-Newtonian fluid flows with applications to stationary/moving objects 
with various shapes [40], unconfined flow and heat transfer [41, 42], and harmonic oscillations of 
lamina in power-law fluids [43]. 

The early studies, however, are limited to narrow ranges of vibration conditions and rheological 
behaviors. Although the fruitful progress has been reached in the study of non-Newtonian fluids, a 
fundamental understanding of the physical changes that may occur in the product during vibration 
and a quantitative description of their effects on its rheological behavior of natural convection is still 
less understood. Our purpose in this paper is to find such information and it is organized as follows. 
In Section 2, we present a lattice Boltzmann scheme to modeling the non-Newtonian power-law 
fluids, including both momentum and temperature evolutions. Section 3 formulates the natural 
convection of non-Newtonian power-law fluids and the boundary conditions, including the nonequi-
librium extrapolation scheme and the description of wall vibrations. The code validation and mesh 
independence are investigated in Section 4. In Section 5, the natural convection of both power-law 
and Newtonian fluids confined in a rectangular cavity with two vertical walls vibrating along the 
longitudinal and transverse directions is investigated by the LBM model, respectively. Conclusions 
are drawn in Section 6. 

2. Mathematical model 

2.1. Lattice Boltzmann equations 

In this paper, we choose a square lattice in two dimensions [44] to evolve the flow, which is shown in 
Figure 1. The lattice Boltzmann equation can be viewed as an implementation of the Boltzmann 

Figure 1. Heat boundary condition for natural convection in a rectangular cavity with vibrating walls. D2Q9 multispeed model is 
applied and the two components of the lattice velocity are cix ¼ {0, 1, 0, � 1, 0, � 1, � 1, � 1, 1} and ciy ¼ {0, 0, 1, 0, � 1, 1, 1, � 1, � 1}, 
i ¼ 0–8, respectively.  
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equation on a discrete lattice and for a discrete set of velocity distribution functions. The BGK lattice 
Boltzmann equation that is discretized in both space and time is given by 

fi xþ ciDt; t þ Dtð Þ � fi x; tð Þ ¼
1
sn

fi x; tð Þ � f eq
i x; tð Þð Þ þ DtFi; ð1Þ

where x and t are the space coordinate and time, Δt is the time step, τν is the relaxation time that 
controls the rate of approach to equilibrium, and Fi is the body force. In addition, the discrete velocity 
ci is defined as follows [45]: 

ci ¼

0; 0ð Þ; i ¼ 0;

coshi; sinhið Þ; hi ¼ i � 1ð Þ p
2 ; i ¼ 1 � 4;

ffiffiffi
2
p

coshi; sinhið Þ; hi ¼ i � 5ð Þ p
2 þ

p
4 ; i ¼ 5 � 8:

8
<

:
ð2Þ

fi (x, t) is the density distribution function and its equilibrium state f eq
i (x, t) is given by 

fi x; tð Þ
eq
¼

4
9 q 1 � 3

2 u2� �
; i ¼ 0;

4
9 q 1þ 3 ci � uð Þ þ 9

2 ci � uð Þ
2
� 3

2 u2� �
; i ¼ 1 � 4;

4
36 q 1þ 3 ci � uð Þ þ 9

2 ci � uð Þ
2
� 3

2 u2� �
; i ¼ 5 � 8:

8
><

>:
ð3Þ

The fluid density ρ and velocity u can be obtained by 

q ¼
X

i
fi; qu ¼

X

i
fici: ð4Þ

The relaxation time τν is related to the kinematic viscosity ν of the fluid as follows 

n ¼
2sn � 1ð Þ

6
; ð5Þ

The macroscopic governing equations can be recovered by the Chapman–Enskog expansion 
approach [46, 47]. 

2.2. Lattice Boltzmann scheme for non-Newtonian fluids 

For non-Newtonian fluids, the effective viscosity μeff is applied, which varies with the local shear 
rate _e. Here the shear rate _e is taken as the second invariant of the symmetric strain rate eαβ as 
follows [48]: 

_e ¼ ffiffiffiffiffiffiffiffiffiffiffiffieabeab
p

; ð6Þ

with 

eab ¼
1
2

qub

qxa

þ
qua

qxb

� �

; ð7Þ

where u is the fluid velocity, subscripts α and β represent the component index in Cartesian coordi-
nates, and the summation convention is used hereafter. The power-law relationship in non-Newto-
nian fluids is considered and the effective viscosity is given by [39] 

meff ¼ k_en� 1; ð8Þ

where k and n are fluid parameters: k is a measurement of consistency of the fluid, and larger values of 
k refer to more viscous fluids; n is a measurement of degree of non-Newtonian behavior, and 
the greater departure from unity is pronounced in the more non-Newtonian properties of the 
fluid [48]. The case n < 1 corresponds to the shear-thinning (pseudo-plastic) fluids, n > 1 corre-
sponds to the shear-thickening (dilatant) fluids, and n ¼ 1 recovers the Newtonian behavior, respect-
ively. The consistency index can be linked with the relaxation time of the Newtonian fluid by a 
relation similar to Eq. (5), since it can be regarded as the viscosity of the fluid when n ¼ 1. Other types 
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of non-Newtonian fluids such as Herschel–Bulkley and Bingham plastic materials and viscoplastic 
materials are not considered in the present work, and more details about these fluids can be referred 
to [19, 49–51] and references cited herein. 

As described above, for the power-law fluids, the effective viscosity μeff is a function of local shear 
rate _e, i.e., the viscosity is related to the local rate of strain through the constitutive equation for the 
shear stress tensor. Therefore, the kinetic viscosity related to the relaxation time τν cannot remain 
invariable, and one has to model the non-Newtonian fluid by determining the value of relaxation time 
locally. In what follows, we extend the lattice Boltzmann scheme to model the non-Newtonian fluids, 
in which the power-law relationship between the effective viscosity and the local shear strains is 
applied to deduce the local effective viscosity. The numerical algorithm is proposed below:  

i. First of all, the lattice nodes are initialized with the desired density and velocity on the basis of 
the fluid properties.  

ii. Then the shear rate _e is calculated from the velocity field in terms of u ¼
P

i fici=q.  
iii. With the shear rate _e known, one can compute the effective viscosity μeff using Eq. (8), which can 

be rewritten as follows [9, 52]: 

meff ¼ k 2
qu
qx

� �2

þ
qv
qy

� �2
" #

þ
qv
qx
þ
qu
qy

� �2
( )n� 1

2

; ð9Þ

where u and v are the velocity components along the x and y directions, respectively. Clearly, for 
a Newtonian fluid n ¼ 1, μeff reduces to the conventional viscosity.  

iv. Evolving the population of distribution functions on the nodes of the square lattice with respect 
to the relaxation time τν, properties of the fluid will be updated using Eq. (4).  

v. Return to step (ii) with the updated fluid density and velocity until a steady flow state has been 
reached. 

It should be noted that the shear stress _e is calculated locally in the present algorithm. The sym-
metric strain rate eαβ can also be calculated locally at each node of the lattice as follows [53]: 

eab ¼ �
3

2sn

X

i
f 1ð Þ
i cici; ð10Þ

where f 1ð Þ
i is the first-order term of the non-equilibrium distribution function as it is further 

expanded. The terms f 1ð Þ
i are usually calculated as part of the velocity calculations in the lattice 

Boltzmann equations. Thus obtaining the shear stress using Eq. (10) is sufficiently efficient than 
calculating the space derivatives of the fluid velocity. 

2.3. Internal energy distribution 

For the evolution of temperature in natural convection, the temperature distribution function is 
given by: 

gi x þ ciDt; t þ Dtð Þ � gi x; tð Þ ¼
1
sc

gi x; tð Þ � geq
i x; tð Þð Þ ð11Þ

where τc is the relaxation time for temperature distribution function gi (x, t) and geq
i (x, t) is the equi-

librium distribution of temperature. The equilibrium states of the temperature distribution functions 
are defined as follows: 

g x; tð Þ
eq
¼

� qe

2 u2; i ¼ 0;
qe

18 1þ ci � uþ 9
2 ci � uð Þ

2
� 3

2 u2� �
; i ¼ 1 � 4;

qe
36 1þ 4ci � uþ 9

2 ci � uð Þ
2
� 3

2 u2� �
; i ¼ 5 � 8:

8
<

:
ð12Þ
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The internal energy ε ¼ 3RT/2 can be calculated by [54] 

q
3RT

2

� �

¼
X

i
gi; ð13Þ

where R and T are the gas constant and the fluid temperature, respectively, and the thermal diffusion 
coefficient is defined as α ¼9

5 (τc—12). 
Then we expand the temperature distribution function gi with respect to g 0ð Þ

i as follows 

gi ¼ g 0ð Þ
i þ dg 1ð Þ

i þ d2g 2ð Þ
i þ O d3� �

; ð14Þ

The first-order expansion of Eq. (11) is 

qt0 þ ci � rð Þg 0ð Þ
i ¼ �

1
sc

g 1ð Þ
i ; ð15Þ

and the second-order expansion of Eq. (11) is 

qt1g 0ð Þ
i þ 1 �

1
2sc

� �

qt0 þ ci � rð Þg 1ð Þ
i ¼ �

1
sc

g 2ð Þ
i : ð16Þ

Summing Eqs. (15) and (16) using the distribution of the internal energy, respectively, we have 

qt0 qeð Þ þ r � queð Þ ¼ 0; ð17Þ

and 

qt1 qeð Þ þ 1 �
1

2sc

� �

P 1ð Þ ¼ 0; ð18Þ

where P 1ð Þ ¼
P

i qt0 þ ci � rð Þg 1ð Þ
i , and particularly Π(1) ¼ � τc 

9
5 ∇2 (ρε) when omitting O (u2δT). 

Combining Eqs. (17) and (18), the energy equation can be recovered as follows 

qt qeð Þ þ r � queð Þ ¼ ar2 qeð Þ: ð19Þ

3. Problem formation 

3.1. Natural convection of power-law fluids 

The natural convection of power-law fluids with the fluid exponent n in the range of 0.5–1.2 is 
performed using the lattice Boltzmann scheme, which has been proposed for non-Newtonian fluids 
in Section 2. The flow configuration consists of a two-dimensional rectangular cavity with a hot ver-
tical wall on the left and a cold vertical wall on the right, as shown in Figure 1, and the horizontal 
(bottom and top) walls are considered to be perfectly insulated. 

The two dimensionless parameters, Rayleigh number (Ra) and Prandtl number (Pr), which 
characterize the natural convective flow, are defined as follows 

Ra ¼
gbDTH3

na
; Pr ¼

n

a
; ð20Þ

where g is the gravitational acceleration, β is the thermal expansion coefficient, ΔT is the temperature 
difference between the two vertical walls, and H is the height (half of the width) of the cavity. In the 
following simulations, Ra ¼ 103, 104, 105 and Pr ¼ 10 are set unless stated otherwise, and we apply the 
Boussinesq approximation to confine the power-law fluids to be laminar flow in the rectangular cavity 
[55]. Moreover, the assumptions that viscous dissipation, radiation, chemical reaction, and tempera-
ture dependency of the fluid viscosity are negligible in the energy equation are made. The buoyancy 
force f is directly proportional to the temperature variation as follows 
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f ¼ � qT0gb T � T0ð Þ ð21Þ

where T0 ¼ (Th þ Tc)/2 is the reference temperature. The body force applied to the momentum 
transport, i.e., Eq. (1), can be given by: 

Fi ¼
f � ci � uð Þ

RT
f eq
i ; ð22Þ

We also consider the averaged heat transfer rate through the hot vertical wall Nu, the maximum 
vertical velocity Vmax/V* along the horizontal center line, and the maximum horizontal velocity 
Umax/V* along the vertical center line. Correspondingly Nu and V* are defined as [26] 

Nu ¼ �
1

DT

XH

1
qxTð Þx¼0;V

� ¼
n

PrH
ð23Þ

3.2. Boundary conditions 

In our simulations, no-slip velocity condition is imposed on the rigid walls of the cavity. As shown in 
Figure 1, fixed temperatures (Dirichlet conditions) are prescribed on the vertical walls (Th and Tc), 
whereas the horizontal walls are perfectly insulated (Neumann conditions), i.e., ∂T/∂y ¼ 0. For the 
adiabatic horizontal walls, i.e., nontemperature gradient condition, we implement this condition as 
follows. The temperatures of fluids and the two horizontal walls are set the averaged value of the 
hot vertical wall and cold vertical wall temperatures initially. During the evolution of temperature dis-
tributions, the temperature of fluids has been updated, and the temperatures of horizontal walls are 
taken the same values as the fluid temperature that is next to the corresponding wall. The perfectly 
insulted walls are therefore implemented. The bounce-back condition is generally used to deal with 
the density distribution function on the rigid walls and is casting doubt on their applicability to other 
boundary conditions including a combination of density, velocity, temperature, and their derivatives 
[56]. A nonequilibrium extrapolation scheme is thus introduced [57, 58] and can be used for both 
steady and unsteady flow in theory. It is also found that the nonequilibrium extrapolation exhibits 
better numerical stability. In this paper, the nonequilibrium extrapolation scheme is applied to both 
density and temperature distribution functions on the walls, which is shown in Figure 2. 

On the basis of nonequilibrium extrapolation scheme, the distribution function is split into two 
parts 

fi O; tð Þ ¼ f eq
i O; tð Þ þ f neq

i O; tð Þ; ð24Þ

Figure 2. Nonequilibrium extrapolation scheme for a D2Q9 multispeed model.  

606 J.-F. XIE AND B.-Y. CAO 

D
ow

nl
oa

de
d 

by
 [

T
si

ng
hu

a 
U

ni
ve

rs
ity

] 
at

 2
3:

26
 2

3 
N

ov
em

be
r 

20
17

 



In the meantime, we define a dummy equilibrium distribution as follows 

f eq
i O; tð Þ ¼ Ei q C; tð Þ;u O; tð Þð Þ ð25Þ

and the equilibrium state of distribution function is given by: 

f eq
i ¼ Ei q; uð Þ ¼ xiq 1þ

ci � u
c2

s
þ

ci � uð Þ
2

2c4
s
�

u2

2c2
s

" #

ð26Þ

where cs is the speed of sound and is chosen as cs ¼ 1/
ffiffiffi
3
p

. Based on Eq. (24), we can get the 
nonequilibrium state of distribution function 

f neq
i C; tð Þ ¼ fi C; tð Þ � f eq

i C; tð Þ; ð27Þ

Substituting Eqs. (25) and (27) into Eq. (24), we obtain the distribution function at the boundary 

fi O; tð Þ ¼ f eq
i O; tð Þ þ fi C; tð Þ þ f eq

i C; tð Þ½ �: ð28Þ

Therefore, the distribution functions of density and temperature on the walls can be given by 

fi;wall ¼ f eq
i;wall þ fi;wall � f eq

i;fluid

gi;wall ¼ geq
i;wall þ gi;wall � geq

i;fluid;
; ð29Þ

where f eq
i;wall and geq

i;wall are the dummy equilibrium distributions on the wall, which are determined by 
Eqs. (3) and (12) along with the no-slip velocity condition, and their densities are equal to those of 
fluid nodes (B, C, and D) that are close to the wall nodes (A, O, and E). It should be noted that Eq. (28) 
is also valid for nodes A B and E D. In addition, f eq

i;wall and geq
i;wall are the equilibrium distributions of 

density and temperature on the fluid nodes next to the walls, respectively. It is known that the none-
quilibrium extrapolation scheme requires some information from the inside flow regions, indicating 
that the treatment is of second-order accuracy at each boundary node. This kind of treatment is 
different from the bounce-back condition, where each calculation is restricted only to the local nodes. 

We now introduce the application of wall vibration, and as shown in Figure 1, the sinusoidal 
forcing wall displacements are imposed to the top and bottom walls of the rectangular cavity [59]. 
We perform the natural convection of viscous power-law fluids in the cavity illustrated in 
Figure 1, and both longitudinal and transverse vibrations are considered. Consequently, the velocity 
of the moving wall under the longitudinal (transverse) vibration is demonstrated by u ¼ u0 · sinωt 
(v ¼ v0 · sinωt) with ω ¼ 2π/T, where u0 (v0), ω, and T are the amplitude, frequency, and period of 
the vibration, respectively. The values or ranges of physical parameters used in our LBM simulations 
are shown in Table 1, and it should be noted that the kinematic viscosity is a variable and can be 
derived from the effective viscosity which is dependent on the local shear rate. It is known that 
the good hydrodynamic behavior can be achieved for τv < 1, whereas the poor hydrodynamic 
behavior may be seen for τv > 1 [60]. Moreover, Niu et al. [61] had investigated the stability and 
hydrodynamics of different lattice Boltzmann models and found that all the LBM approaches seem 
unstable for τv << 0.5. In the previous work, Eggels and Somers [62] set the kinematic viscosity in 

Table 1. Values or ranges of key physical parameters in the present LBM simulations. 
Parameter Symbol Value  

Kinematic viscosity ν  0.0005–0.2 
Relaxation time for mass τν  0.5015–1.1 
Fluid consistency k  0.01–5.0 
Fluid exponent n  0.5–1.2 
Prandtl number Pr  0.71–102 

Relaxation time for temperature τc  0.5009–0.536 
Rayleigh number Ra  103–106 

LBM, lattice Boltzmann method.   
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the range of 0.00001 <ν < 0.25 in lattice Boltzmann simulation of free convective flow, and 
Gabbanelli et al. [32] set the lower and upper saturation values of the kinematic viscosity in their 
truncated power-law model to νmin ¼ 0.001 and νmax ¼ 0.1. The chosen values or ranges of variables 
in the present LBM simulations can guarantee the reasonable hydrodynamic behaviors and numerical 
stability. 

4. Code validation and mesh independence 

Based on the lattice Boltzmann scheme of the non-Newtonian fluids introduced in Section 2.2, we 
present the results of the planar pressure-driven Poiseuille flow with respect to the pressure boundary 
condition [63], which are shown in Figure 3. It should be noted that the fluid variables and para-
meters used in the simulation are set by the lattice units. To validate our LBM solver, the analytical 
solution for the power-law fluid flow is also given by [39, 64] 

u yð Þ ¼
n

nþ 1

� �
G
m

� �
H
2

� �nþ1
n

� yj j
nþ1

n

" #

; ð30Þ

where G is the pressure gradient. It is seen in Figure 3 that for three values of fluid index, i.e., n ¼ 0.5 
(k ¼ 0.01), 1.0 (k ¼ 0.1), and 1.2 (k ¼ 1.0), the velocity profiles obtained by our LBM solver reach a 
good agreement with the analytical solution. This agreement enables us to simulate the power-law 
fluid flow using the present LBM non-Newtonian solver. In addition, the treatment of surface 
vibration should be tested before we apply the vibrating wall condition to natural convections in 
the cavity. As an example, take the case of planar Couette flow driven by the top wall moving with 

Figure 3. Velocity profiles of power-law Poiseuille flow for: (a) n ¼ 0.5; (b) n ¼ 1.0; and (c) n ¼ 1.2. The solid red lines represent 
the analytical solution expressed in Eq. (30).  
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a constant velocity u0 ¼ 0.1 (the distance between top and bottom walls is 65 lattice units), and the 
periodic and velocity boundary conditions are applied to the inlet/outlet and walls, respectively. Two 
relaxation times are used in our LBM simulations, i.e., overrelaxation (τ ¼ 2.9) and underrelaxation 
(τ ¼ 0.8). As is seen in Figure 4, the result with the underrelaxation time reaches an excellent agree-
ment with the analytical solution (u(y) ¼u0 y/H). 

On the other hand, the natural convection in a square cavity has been performed to validate our 
thermal LBM solver, and the results are compared with the benchmark data and available results in 
the literature, which is shown in Table 2. The comparison in Table 2 indicates that our thermal LBM 
results reach a reasonable agreement with the benchmark data. As mentioned earlier, the nonequili-
brium extrapolation scheme is applied to the evolution of both mass and temperature distributions on 
the walls, and the comparison between the nonequilibrium extrapolation scheme and bounce-back 
boundary condition has been made, which is also shown in Table 2. As shown in Table 2, the 
maximum velocity components obtained by the bounce-back boundary condition are close to these 
computed by the nonequilibrium extrapolation scheme and benchmark data. The averaged Nusselt 
number that characterizes the heat transfer rate, however, is underpredicted by the bounce-back 

Table 2. Comparison of the averaged Nusselt number Nu, the maximum velocity components along the central lines Umax/V∗ and 
Vmax/V∗ with available results and benchmark data in the literature in a square cavity for Ra ¼ 104–106, Pr ¼ 0.71, and n ¼ 1.0. 

Ra ¼ 104 Nu Umax/V∗ Vmax/V∗  

Present results with nonequilibrium extrapolation BC  2.2703  19.5648  16.1252 
Present results with bounce-back BC  1.2552  19.7799  16.2906 
Barakos et al.[70]  2.245  19.717  16.262 
de Vahl Davis and Jones [71]  2.243  19.617  16.178 
Fusegi [72]  2.302  18.959  16.937 
Ra ¼ 105 Nu Umax/V∗ Vmax/V∗ 

Present results with nonequilibrium extrapolation BC  4.5528  68.3976  34.7521 
Present results with bounce-back BC  2.5747  70.1897  35.6749 
Barakos et al.[70]  4.51  68.746  35.173 
de Vahl Davis and Jones [71]  4.519  68.59  34.73 
Fusegi [72]  4.646  65.815  39.169 
Ra ¼ 106 Nu Umax/V∗ Vmax/V∗ 

Present results with nonequilibrium extrapolation BC  8.5853  225.73219  65.7175 
Present results with bounce-back BC  5.0944  238.1117  69.6346 
Janssen [73]  8.8196  221.277  64.681 
Le Quéré[74]  8.8259  220.408  64.796   

Figure 4. Velocity profiles of Couette flow: open squares and circles represent the LBM results with over-relaxation and under- 
relaxation times, respectively. The solid red line shows the analytical solution.  
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boundary condition for Ra ranged from 104 to 106. To demonstrate the mesh independence in our 
simulations, the dependence of numerical accuracy on the mesh grids has been investigated for the 
natural convection of Newtonian fluid in the rectangular cavity without wall vibrations using such 
meshes as 100 � 50, 110 � 55, 120 � 60, 130 � 65, 140 � 70, and 150 � 75. The numerical results 
of the averaged Nusselt number and the maximum velocity components along the central lines of 
the cavity with different mesh grids are shown in Table 3, which indicate the independence of 
numerical results on the mesh grid up to 130 � 65. Therefore, the following results and discussion 
are all based on the mesh grid 130 � 65. 

5. Results and discussion 

Temperature distributions of the natural convection of power-law fluids are shown in Figures 5–7 for 
longitudinal (x-direction) and transverse (y-direction) vibrations, respectively. It can be seen that 

Figure 5. Temperature distributions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and 
transverse vibrations (Ra ¼ 103 and Pr ¼ 10), respectively.  

Table 3. Mesh independence: The averaged Nusselt number Nu, the maximum velocity components along the central lines  
Umax/V∗ and Vmax/V∗ for Ra ¼ 103, Pr ¼ 10, and n ¼ 1.0. 

Mesh grid Nu Umax/V∗ Vmax/V∗  

100 � 50  0.5071  0.9385  0.5902 
110 � 55  0.5067  0.9421  0.5915 
120 � 60  0.5063  0.9449  0.5945 
130 � 65  0.5059  0.9474  0.5953 
140 � 70  0.5057  0.9494  0.5973 
150 � 75  0.5055  0.9511  0.5979   
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Figure 6. Temperature distributions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and 
transverse vibrations (Ra ¼ 104 and Pr ¼ 10), respectively.  

Figure 7. Temperature distributions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and 
transverse vibrations (Ra ¼ 105 and Pr ¼ 10), respectively.  
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temperature distributions are influenced under the longitudinal and transverse vibrations compared 
to the isothermal lines without wall vibrations. At low Ra such as 103 and 104, the isothermal lines in 
the cavity are not influenced by the wall vibrations significantly, which is shown in Figures 5 and 6. 
As Ra increases to 105, as shown in Figure 7, the natural convection is affected under the y-vibration 
more efficiently for both power-law and Newtonian fluids. Particularly, the isothermal lines are 
bended to the left on the top wall and bended to the right on the bottom wall, respectively. As 
shown in Table 4, the averaged Nusselt number Nu near the hot wall is increased for both 
power-law and Newtonian fluids under the x-vibration when Ra increases from 103 to 105. It is also 
seen in Table 5 that Nu is always increased under the y-vibration for both Newtonian and power-law 
fluids. 

Flow fields of power-law fluids are shown in Figures 8–10 for longitudinal and transverse vibra-
tions, respectively. For power-law fluid under the x-vibration at Ra ¼ 103, as shown in Figure 8, 
the central main vortex is compressed down the center of the cavity and two secondary vortices 
are produced at the upper corners of the cavity. However, for the power-law fluid under y-vibration, 
the central main vortex is moved to left slightly, and two secondary vortices are produced near the hot 
and cool walls, respectively. On the other hand, for Newtonian fluid under the x-vibration, the cavity 
is occupied by an upper vortex and a lower vortex. But the cavity is occupied by a main vortex near 
the cool wall and a secondary vortex near the hot wall for Newtonian fluid under y-vibration. When 
Ra increases to 104, as shown in Figure 9, there are two smaller secondary vortices at the upper 
corners of the cavity under x-vibration and two smaller secondary vortices at the corners of cool wall 
under y-vibration, respectively. The similar phenomena appear for Newtonian fluid under both x and 

Table 4. Flow parameters: The averaged Nusselt number Nu, the maximum velocity components along the central lines Umax/V∗ 

and Vmax/V*, and the stream function |ψmax| for Pr ¼ 10 under the longitudinal vibration of horizontal walls in a rectangular cavity.  

n Nu Umax/V∗ Vmax/V∗ |ψmax|  

Ra ¼ 103  0.5  0.4447  0.7593  0.3269  0.036  
0.7  0.5389  1.1009  0.3492  0.007  
1.0  0.4928  11.1431  0.5587  0.0016  
1.2  0.5376  1.3752  1.0056  0.0016 

Ra ¼ 104  0.5  0.4824  4.3557  2.5976  0.14  
0.7  0.5078  6.8771  4.0187  0.036  
1.0  0.5931  12.3506  5.6991  0.008  
1.2  0.7267  11.6581  9.8265  0.022 

Ra ¼ 105  0.5  1.2343  12.8639  11.4662  0.2  
0.7  1.3716  26.6784  23.6375  0.1  
1.0  1.6328  32.2207  39.8809  0.034  
1.2  2.1528  38.2221  48.1955  0.13   

Table 5. Flow parameters: The averaged Nusselt number Nu, the maximum velocity components along the central lines Umax/V∗ 

and Vmax/V∗, and the stream function |ψmax| for Pr ¼ 10 under the transverse vibration of horizontal walls in a rectangular cavity.  

n Nu Umax/V∗ Vmax/V∗ |ψmax|  

Ra ¼ 103  0.5  0.5139  0.7544  0.4295  0.036  
0.7  0.5389  0.7299  1.9866  0.0035  
1.0  0.5589  3.0565  10.7013  0.002  
1.2  0.5066  0.9435  0.6659  0.0014 

Ra ¼ 104  0.5  0.5524  5.6339  3.5374  0.14  
0.7  0.5516  5.8135  3.9681  0.034  
1.0  0.6511  6.2689  9.0307  0.006  
1.2  0.7643  8.0975  7.3616  0.02 

Ra ¼ 105  0.5  1.2805  7.6249  6.8225  0.22  
0.7  1.2542  27.0022  23.1907  0.1  
1.0  1.6816  29.7187  39.3263  0.032  
1.2  2.2335  35.4849  45.7209  0.12   
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Figure 8. Velocity fields of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 103 and Pr ¼ 10), respectively.  

Figure 9. Velocity fields of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 104 and Pr ¼ 10), respectively.  
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y-vibrations, but the velocity traces are sharp at the bottom corners of the main vortex. When Ra 
increases to 105, as shown in Figure 10, the two secondary vortices get smallest under x-vibration 
for power-law fluid, and there are no secondary vortices appeared under the y-vibration. On the other 
hand, two secondary vortices are still produced for Newtonian fluid at the corners of top and right 
walls under both x and y-vibrations. Recently, Delouei et al. [41] have investigated the steady and 
unsteady flows over a cylinder for the shear-thinning, Newtonian, and shear-thickening fluids using 
the IB-LBM approach, respectively, and have found that the place and size of the vortex which is 
formed behind the cylinder are highly dependent on the fluid index. Moreover, the shedding vortex 
length is very sensitive to the fluid indices in steady flows, and the fluid index plays an important role 
in the separation phenomenon in unsteady flows. Therefore, mechanisms of the apparent viscosity of 
power-law fluids influenced by the fluid index have been explored, which is shown in Figure 11 for the 
shear-thinning fluid (n ¼ 0.7). As is seen in Figure 11, the maximum viscosity of the shear-thinning 
fluid is distributed along the central lines of the rectangular cavity for Ra ¼ 103, but the minimum 
viscosity is concentrated near the four corners. As Ra increases to 105, the area of maximum viscosity 
is enlarged in the center of cavity. However, the area of minimum viscosity has shrunk or disappeared 
near the four corners. Accordingly, the vortex that is formed in the center of cavity becomes wider with 
the increment of Ra. Furthermore, the variation of viscosities of shear-thickening fluid (n ¼ 1.2) has 
also been taken into account in the presence of longitudinal wall vibrations, which is shown in 
Figure 12. In contrast to the shear-thinning fluid, the maximum viscosity of shear-thickening fluid 
is distributed around the corners of rectangular cavity, and the minimum viscosity is visualized in 
the central area. As Ra increases to 105, the area of maximum viscosity has shrunken. In the meantime, 
the two vortices that are formed in the center of cavity become wider. The viscosity distribution, how-
ever, is contrasted with the above situation when the transverse wall vibration is applied (Effect of 

Figure 10. Velocity fields of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 105 and Pr ¼ 10), respectively.  
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Figure 11. Viscosity contours for the shear-thinning fluid (n ¼ 0.7) in a rectangular cavity (Ra ¼ 103–105 and Pr ¼ 10) without 
applying the longitudinal wall vibrations.  

Figure 12. Viscosity contours for the shear-thickening fluid (n ¼ 1.2) in a rectangular cavity (Ra ¼ 103–105 and Pr ¼ 10), respect-
ively. Left panel: the natural convections without applying the longitudinal wall vibrations. Right panel: the cases in the presence of 
longitudinal wall vibrations.  
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Figure 13. Stream functions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 103 and Pr ¼ 10), respectively.  

Figure 14. Stream functions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 104 and Pr ¼ 10), respectively.  
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Figure 15. Stream functions of power-law fluids and Newtonian fluid in a rectangular cavity under the longitudinal and transverse 
vibrations (Ra ¼ 105 and Pr ¼ 10), respectively.  

Figure 16. Velocity profiles of power-law fluids and Newtonian fluid at the central line of a rectangular cavity along the x- and 
y-directions under the longitudinal and transverse vibrations (Ra ¼ 103 and Pr ¼ 10), respectively.  
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transverse vibration not shown for brevity.). The area of maximum viscosity is enlarged with the 
increment of Ra, and the two secondary vortices near the top corners have disappeared along with 
the widening of two main vortices formed in the center of cavity. 

Stream functions of power-law fluids are shown in Figures 13–15 for longitudinal and transverse 
vibrations, respectively. For power-law fluids at Ra ¼ 103, as shown in Figure 13, the stream function 
is decreased significantly under the y-vibration compared to the x-vibration, which are both two 
orders smaller in magnitude than that without the wall vibration. However, the stream functions 
are both increased slightly for Newtonian fluid under both x and y-vibrations. When Ra increases 
to 104, as shown in Figure 14, the decrease in stream function for power-law fluid under the x 
and y-vibrations is both weakened, which is only one-order smaller in magnitude than that without 
the wall vibration. Inversely the stream function of Newtonian fluid is decreased slightly under both x 
and y-vibrations. As is seen in Figure 15, when Ra increases to 105, the stream function of power-law 
fluid is still decreased but keeps the same level as that without the wall vibration. Interestingly the 
stream function of Newtonian fluid shows no difference under x-vibration and slight decrease under 
y-vibration compared to that without the wall vibration. 

The velocity profiles of power-law fluids at the central lines of the cavity are tracked illustrating the 
effect of wall vibration along the longitudinal and transverse directions on the flow, which are shown 
in Figures 16–18. It is obvious that the velocity components u and v of power-law fluid at the central 
line of the cavity have been decreased significantly under wall vibrations at Ra ¼ 103, particularly 
under y-vibration, as shown in Figure 16. However, the velocity component u along the y-direction 

Figure 17. Velocity profiles of power-law fluids and Newtonian fluid at the central line of a rectangular cavity along the x- and 
y-directions under the longitudinal and transverse vibrations (Ra ¼ 104 and Pr ¼ 10), respectively.  
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of Newtonian fluid at the central line of the cavity has been increased under both x- and y-direction 
vibrations. The velocity component v along x-direction under y-vibration is larger than that without 
the vibration, but is the same as that under x-vibration. In addition, the velocity components u and v 
of Newtonian fluid have been increased sharply near the hot and cool walls under x and y-vibrations, 
respectively. Influence of wall vibrations on the velocity components of power-law fluid at the central 
line of the cavity has been decreased further when Ra increases to 104, as shown in Figure 17, and the 
difference between x- and y-vibrations can be ignored in the main region of the cavity. On the other 
hand, the effect of wall vibrations on the velocity components of Newtonian fluid is reduced, and the 
difference between the velocity profiles gets smaller. Besides, the larger velocity component u and v of 
Newtonian fluid appears near the hot and cool walls of the cavity under x- and y-vibrations, respect-
ively. It is seen in Figure 18 that the velocity components of power-law fluid at the central line of the 
cavity are decreased to the lowest values under wall vibrations and they show no difference 
between x- and y-vibrations when Ra increases to 105. Especially the velocity component v along 
the x-direction of power-law fluid has been reduced nearly to zero in the main region of the cavity. 
That is, the convection of power-law fluid has been “chocked” in the cavity, and the heat transfer has 
been dominated by conduction. In the meantime, there is no obvious effect of wall vibrations on the 
velocity components of Newtonian fluid at the central line of cavity at Ra ¼ 105 whatever the wall 
vibration is, longitudinal or transverse. 

The values for flow parameters of power-law fluids in natural convection such as Nu, 
the maximum velocities along the central lines of the cavity Umax and Vmax, and the stream function 

Figure 18. Velocity profiles of power-law fluids and Newtonian fluid at the central line of a rectangular cavity along the x- and 
y-directions under the longitudinal and transverse vibrations (Ra ¼ 105 and Pr ¼ 10), respectively.  
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|ψmax| under the longitudinal and transverse vibrations are shown in Tables 4 and 5, respectively. 
Also, the averaged Nusselt number, maximum velocity components, and the stream function varied 
as a function of fluid exponent n are plotted in Figures 19–22, respectively. It is seen in Figure 19 
that Nu is increased significantly with the fluid exponent increasing at Ra ¼ 105 under both longitudi-
nal and transverse vibrations. In the meantime, the heat transfer rate is smaller under wall vibrations 
than that without wall vibrations. However, Nu is increased slightly at Ra ¼ 104, and it is kept the 
level at Ra ¼ 103. That is, the heat transfer rate is much larger at high Ra than that at low Ra, and 
the enhancement of heat transfer has been achieved when the heat exchange is dominated by the con-
vection. Therefore, we can conclude that Nu increases with Ra increasing for both Newtonian and 
power-law fluids. Moreover, Nu for shear-thinning fluids is greater than that obtained in the case 
of Newtonian fluids with the same Ra due to strengthening of the convective transport. Turan 
et al. [65, 66] also found that the effects of convection strengthen with increasing Ra for a given 
set of fluid exponent n, and with increasing shear-thickening the thermal conduction contributes 
to the heat transfer principally. In addition, it is shown in Figure 19 that Nu increases with Ra increas-
ing in the convection-dominated region, while Nu remains approximately constant at low Ra in the 
conduction-dominated region. This is consistent with the observations in the natural convection of 
non-Newtonian power-law fluids confined in a cavity with curved vertical walls [67]. 

Figure 19. The averaged Nusselt number Nu varied as a function of fluid exponent n under the longitudinal (a) and transverse (b) 
vibrations (Pr ¼ 10 and Ra ¼ 103, 104, 105), respectively.  
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For the maximum horizontal component of the velocity along the central line of the cavity, as 
shown in Figure 20, it is decreased under both longitudinal and transverse vibrations as the fluid 
exponent approaches to unity. However, when the fluid exponent exceeds unity, i.e., the shear- 
thickening fluid, the maximum horizontal component of the velocity is increased. Particularly, the 
maximum horizontal component is decreased significantly at Ra ¼ 105 compared to that at Ra ¼ 103 

and 104. It can be explained that the convection has been quenched more sufficiently at large Ra by 
wall vibrations. Similarly, the maximum vertical component of the velocity along the central line of 
the cavity is also decreased with the fluid exponent increasing for shear-thinning fluids under both 
longitudinal and transverse vibrations, which is shown in Figure 21, but it is increased for 
shear-thickening fluids. It can be also seen that the maximum vertical component has been quenched 
significantly at Ra ¼ 105 compared to that at low Ra, which illustrates the same trend as the 
maximum horizontal component of the velocity of power-law fluids. In addition, it shows no effect 
of wall vibrations on the maximum velocity components of both Newtonian and shear-thickening 
fluids. Guha and Pradhan [1] found that the velocity, temperature, and pressure inside the boundary 
layer depend on the fluid exponent n and Pr, indicating that the shear-thinning fluids show improved 
heat transfer characteristics as compared to Newtonian and shear-thickening fluids at the same 
Pr. We have known that the velocity of power-law fluids has been decreased in the middle of the 
cavity under wall vibrations, and accordingly the variation of stream function as a function of fluid 

Figure 20. Maximum horizontal component of the velocity Umax varied as a function of fluid exponent n under the longitudinal 
(a) and transverse (b) vibrations (Pr ¼ 10 and Ra ¼ 103, 104, 105), respectively.  
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exponent is plotted in Figure 22. It can be seen that the stream function of shear-thinning fluids is 
decreased significantly under both longitudinal and transverse vibrations at Ra ¼ 105 compared to 
that at Ra ¼ 103 and 104. However, wall vibrations have no effect on the stream function of shear- 
thickening fluids, which is increased with the increase in fluid exponent. 

Apart from the fluid exponent and Ra, the effect of aspect ratio (AR) on the convective flow and 
heat transfer has also been taken into account [68, 69], and the results are shown in Table 6 (flow 
fields not shown for brevity). As is seen in Table 6, Nu decreased as the aspect ratio increases, indi-
cating the reduction of heat transfer under longitudinal vibration of horizontal walls. The velocity 
component of convective flow is affected slightly along the horizontal wall after the AR reaches 
2:1, but is reduced dramatically along the vertical wall. Furthermore, the maximum value of stream 
function is decreased with the increase in AR. The key parameter Pr may also play an important role 
in the natural convection of power-law fluids, and the effect of Pr on the convective flow and heat 
transfer has been investigated, which is shown in Table 7. It is seen in Table 7 that Nu is decreased 
as Pr increases, which indicates that the heat transfer of power-law fluid is weakened at large Pr under 
the longitudinal vibration of horizontal walls. The convective behavior contrasts with that in different 
aspect ratios, i.e., the velocity component along the horizontal walls is affected significantly by Pr, but 
the component along the vertical walls is changed slightly. However, the variation of maximum value 
of stream function shows the same trend as AR, and is a decreasing function of Pr. 

Figure 21. Maximum vertical component of the velocity Vmax varied as a function of fluid exponent n under the longitudinal (a) 
and transverse (b) vibrations (Pr ¼ 10 and Ra ¼ 103, 104, 105), respectively.  
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Figure 22. The stream function |ψmax| varied as a function of fluid exponent n under the longitudinal (a) and transverse (b) 
vibrations (Pr ¼ 10 and Ra ¼ 103, 104, 105), respectively.  

Table 6. Effect of aspect ratio (AR) on the averaged Nusselt number Nu, the maximum velocity components along the central lines 
Umax/V∗ and Vmax/V*, and the stream function |ψmax| under the longitudinal vibration of horizontal walls for Ra ¼ 104, Pr ¼ 10, and 
n ¼ 0.7. 

AR Nu Umax/V∗ Vmax/V∗ |ψmax|  

1:1  1.1171  22.7475  21.6166  0.014 
2:1  0.3266  16.6826  5.9659  0.005 
3:1  0.2103  15.1419  1.4131  0.0035 
4:1  0.1845  16.5949  1.0122  0.002   

Table 7. Effect of Prandtl number (Pr) on the averaged Nusselt number Nu, the maximum velocity components along the central 
lines Umax/V∗ and Vmax/V*, and the stream function |ψmax| under the longitudinal vibration of horizontal walls for Ra ¼ 104 and 
n ¼ 0.7. 

Pr Nu Umax/V∗ Vmax/V∗ |ψmax|  

2  0.5511  7.6582  4.1683  0.016 
4  0.5435  9.5512  4.3023  0.009 
6  0.4755  12.1219  4.1385  0.007 
8  0.3959  14.5172  4.78263  0.0055 
10  0.3266  16.6826  5.9659  0.005 
12  0.2991  18.5534  7.3597  0.004   
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6. Conclusion 

The effects of wall vibrations on natural convection of non-Newtonian power-law fluids in 
a rectangular cavity have been investigated in the frame of lattice Boltzmann scheme. The 
power-law fluids were heated from the right vertical wall of the cavity and confined between 
two horizontal walls that vibrated along the longitudinal and transverse directions, respectively. 
The velocity fields, temperature distributions, and heat transfer characteristics of power-law fluids 
in the rectangular cavity were influenced by wall vibrations obviously. The averaged Nusselt 
number near the hot wall was increased significantly with the fluid exponent increasing at high 
Ra. In the meantime, the heat transfer rate was smaller under wall vibrations than that without wall 
vibrations. However, the averaged Nusselt number was increased slightly at Ra ¼ 104, and it was 
kept constant at Ra ¼ 103, which indicated that the heat transfer rate is much larger at high Ra 
and the enhancement of heat transfer can be achieved when the heat exchange is dominated by 
the convection. Moreover, wall vibrations showed slight and even no influence on the averaged 
Nusselt number of power-law fluids at low Ra. 

The velocity components along the central lines of the cavity were decreased significantly for 
power-law fluids under wall vibrations. However, it showed no influence on the Newtonian fluid. 
The maximum velocity components of shear-thinning fluids were both decreased under wall vibra-
tions with the fluid exponent increasing, but it was unchanged in shear-thickening fluids. For the 
maximum horizontal component of the velocity along the central line of the cavity, it was decreased 
under both longitudinal and transverse vibrations as the fluid exponent approached to unity. How-
ever, when the fluid exponent was greater than unity, i.e., the shear-thickening fluid, the maximum 
horizontal component of the velocity was increased. Particularly, the maximum horizontal compo-
nent was decreased significantly at Ra ¼ 105 compared to that at Ra ¼ 103 and 104, which indicated 
that the convection was quenched more sufficiently by wall vibrations at large Ra. In addition, it 
showed no effect of wall vibrations on the maximum velocity components of both Newtonian and 
shear-thickening fluids. The similar situation happened to the maximum vertical component of the 
velocity along the central line of the cavity. Correspondingly, the stream function of shear-thinning 
fluids was decreased under wall vibrations, indicating the weakening of convection. However, wall 
vibrations had no effect on the stream function of shear-thickening fluids, which was increased with 
the fluid exponent increasing. It can be concluded that the effects of wall vibrations on the stream-
lines, isotherm contours and heat transfer characteristics of power-law fluids have been observed 
obviously at high Ra (∼105). The effects of AR and Pr were also taken into account, and the heat 
transfer rate was decreased with the increment of both AR and Pr. 
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